Get indices of array at certain value python

I have an array like this:

[[0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0]
 [0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
 [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0]
 [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0]
 [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0]
 [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0]
 [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0]
 [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0]
 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0]
 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
 [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
 [0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
 [0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0]]

I like to loop through the array. Everywhere where the array has a value of 1 I like to get the index of the array and perform a operation.

Roughly something like this:

for value in array:
   if value ==1:
     print arrayIndexX, arrayIndexY

Answers


Using enumerate, and a nested loop through rows and columns:

for y, row in enumerate(array):
    for x, val in enumerate(row):
        if val == 1:
            print x, y

You can use numpy.where with numpy.column_stack here. Example:

>>> import numpy as np
>>> a = np.array([[1, 0, 0], [0, 1, 0], [1, 1, 1]])
>>> np.column_stack(np.where(a==1))
array([[0, 0],
       [1, 1],
       [2, 0],
       [2, 1],
       [2, 2]])

for r, row in enumerate(array):
    for c, val in enumerate(row):
        if val == 1:
            print r,c

Alternatively, you could build a list containing the required coordinate values:

[(r,c) for r,row in enumerate(array) for c,val in enumerate(row) if val==1]

In this case you could also use the np.nonzero( YourArray ) function, this will give you exactly what you want.


Maybe this could help, where "a" its your array:

for i in range(len(a)):
    for j in range(len(a[i])):
        if(a[i][j]==1):
            print i,j

Probably numpy.nonzero is the easiest...

b = np.array(
[[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]])

ind = np.nonzero(b)
print(ind)
(array([ 0,  0,  1,  1,  1,  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  3,
    3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  4,  4,  4,  4,  4,
    4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  5,  5,  5,  5,  5,  5,
    5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  6,  6,  6,  6,
    6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,
    6,  6,  6,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  7,
    7,  7,  7,  7,  7,  7,  7,  7,  7,  7,  8,  8,  8,  8,  8,  8,  8,
    8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,
    9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,
    9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
   10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
   11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
   11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
   12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13,
   13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
   13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16,
   16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
   16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
   17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
   18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
   18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
   19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
   21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22,
   22, 22, 23, 23, 23, 23]), array([ 5,  6,  5,  6,  7,  8,  9,  5,  6,  7,  8,  9, 10, 11, 12, 13,  4,
    5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,  4,  5,  6,  7,  8,
    9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,  4,  5,  6,  7,  8,  9,
   10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,  3,  4,  5,  6,
    7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
   24, 25, 27,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
   17, 18, 19, 20, 21, 22, 23, 24, 25, 27,  3,  4,  5,  6,  7,  8,  9,
   10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27,
    3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
   20, 21, 22, 23, 24, 25, 27,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,
   12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,  2,  3,  4,
    5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
   22, 23, 24, 25,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
   15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,  1,  2,  3,  4,  5,  6,
    7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
   24,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
   17, 18, 19, 20, 21, 22, 23, 24,  1,  2,  3,  4,  5,  6,  7,  8,  9,
   10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,  0,  1,
    2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
   19, 20, 21, 22, 23, 24,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,
   11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,  2,  3,  4,  5,
    6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
   23,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
   21, 22, 23,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
   12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 16, 17, 18, 19, 20,
   21, 22, 18, 19, 20, 21]))

But, I think maybe far better is to use masked arrays...

marray = np.ma.array(b, mask=(b == 0))
print(marray)
[[-- -- -- -- -- 1 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- 1 1 1 1 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- -- 1 1 1 1 1 1 1 1 1 -- -- -- -- -- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- -- -- -- -- -- -- -- --]
 [-- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- -- -- -- -- --]
 [-- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- -- --]
 [-- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- 1]
 [-- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- 1]
 [-- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- 1]
 [-- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- 1]
 [-- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- --]
 [-- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- --]
 [-- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- --]
 [-- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- --]
 [-- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- --]
 [-- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- --]
 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- --]
 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- --]
 [-- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- --]
 [-- -- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- --]
 [-- -- -- -- -- -- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- -- -- -- 1 1 1 1 1 1 1 1 1 1 1 -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 1 1 1 1 1 1 1 -- -- -- -- --]
 [-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 1 1 1 -- -- -- -- -- --]]

With masked array you could then just make the manipulations that you want and the only elements that are used are the unmasked ones.


Need Your Help

Two imageview with separate touchevent

android imageview android-imageview

In my xml file, I have declared two imageview and later I add image in it by using setImageBitmap() method and also apply separate touch event.

How to multiply a sparse matrix by a dense martix with eigen?

c++ eigen

I am trying to multiply a sparse matrix by a dense matrix in Eigen in C++ (the dimensions of course match). The following doesn't seem to work.