Pandas - GroupBy and then Merge on original table

I'm trying to write a function to aggregate and perform various stats calcuations on a dataframe in Pandas and then merge it to the original dataframe however, I'm running to issues. This is code equivalent in SQL:

SELECT EID,
       PCODE,
       SUM(PVALUE) AS PVALUE,
       SUM(SQRT(SC*EXP(SC-1))) AS SC,
       SUM(SI) AS SI,
       SUM(EE) AS EE
INTO foo_bar_grp
FROM foo_bar
GROUP BY EID, PCODE 

And then join on the original table:

SELECT *
FROM foo_bar_grp INNER JOIN 
foo_bar ON foo_bar.EID = foo_bar_grp.EID 
        AND foo_bar.PCODE = foo_bar_grp.PCODE

Here are the steps: Loading the data IN:>>

pol_dict = {'PID':[1,1,2,2],
             'EID':[123,123,123,123],
             'PCODE':['GU','GR','GU','GR'],
             'PVALUE':[100,50,150,300],
             'SI':[400,40,140,140],
             'SC':[230,23,213,213],
             'EE':[10000,10000,2000,30000],
             }


pol_df = DataFrame(pol_dict)

pol_df

OUT:>>

   EID    EE PCODE  PID  PVALUE   SC   SI
0  123  10000    GU    1     100  230  400
1  123  10000    GR    1      50   23   40
2  123   2000    GU    2     150  213  140
3  123  30000    GR    2     300  213  140

Step 2: Calculating and Grouping on the data:

My pandas code is as follows:

#create aggregation dataframe
poagg_df = pol_df
del poagg_df['PID']
po_grouped_df = poagg_df.groupby(['EID','PCODE'])

#generate acc level aggregate
acc_df = po_grouped_df.agg({
    'PVALUE' : np.sum,
    'SI' : lambda x: np.sqrt(np.sum(x * np.exp(x-1))),
    'SC' : np.sum,
    'EE' : np.sum
})

This works fine until I want to join on the original table:

IN:>>

po_account_df = pd.merge(acc_df, po_df, on=['EID','PCODE'], how='inner',suffixes=('_Acc','_Po'))

OUT:>> KeyError: u'no item named EID'

For some reason, the grouped dataframe can't join back to the original table. I've looked at ways of trying to convert the groupby columns to actual columns but that doesn't seem to work.

Please note, the end goal is to be able to find the percentage for each column (PVALUE, SI, SC, EE) IE:

pol_acc_df['PVALUE_PCT'] = np.round(pol_acc_df.PVALUE_Po/pol_acc_df.PVALUE_Acc,4)

Thanks!

Answers


By default, groupby output has the grouping columns as indicies, not columns, which is why the merge is failing.

There are a couple different ways to handle it, probably the easiest is using the as_index parameter when you define the groupby object.

po_grouped_df = poagg_df.groupby(['EID','PCODE'], as_index=False)

Then, your merge should work as expected.

In [356]: pd.merge(acc_df, pol_df, on=['EID','PCODE'], how='inner',suffixes=('_Acc','_Po'))
Out[356]: 
   EID PCODE  SC_Acc  EE_Acc        SI_Acc  PVALUE_Acc  EE_Po  PVALUE_Po  \
0  123    GR     236   40000  1.805222e+31         350  10000         50   
1  123    GR     236   40000  1.805222e+31         350  30000        300   
2  123    GU     443   12000  8.765549e+87         250  10000        100   
3  123    GU     443   12000  8.765549e+87         250   2000        150   

   SC_Po  SI_Po  
0     23     40  
1    213    140  
2    230    400  
3    213    140  

From the pandas docs:

Transformation: perform some group-specific computations and return a like-indexed object

Unfortunately, transform works series by series, so you wouldn't be able to perform multiple functions on multiple columns as you've done with agg, but transform does allow you to skip merge

po_grouped_df = pol_df.groupby(['EID','PCODE'])
pol_df['sum_pval'] = po_grouped_df['PVALUE'].transform(sum)
pol_df['func_si'] = po_grouped_df['SI'].transform(lambda x: np.sqrt(np.sum(x * np.exp(x-1))))
pol_df['sum_sc'] = po_grouped_df['SC'].transform(sum)
pol_df['sum_ee'] = po_grouped_df['EE'].transform(sum)
pol_df

Results in:

PID EID PCODE   PVALUE  SI  SC  EE      sum_pval    func_si         sum_sc  sum_ee
1   123 GU      100     400 230 10000   250         8.765549e+87    443     12000
1   123 GR      50      40  23  10000   350         1.805222e+31    236     40000
2   123 GU      150     140 213 2000    250         8.765549e+87    443     12000
2   123 GR      300     140 213 30000   350         1.805222e+31    236     40000

For more info, check out this SO answer.


Need Your Help

Is there a way to exclude a Maven dependency globally?

maven maven-2 dependencies pom.xml

I’m trying to find a “generic” way of excluding a transitive dependency from being included without having to exclude it from all the dependencies that depend on it. For example, if I want to excl...

if statement - short circuit evaluation vs readability

c++ if-statement short-circuiting side-effects

Sometimes, an if statement can be rather complicated or long, so for the sake of readability it is better to extract complicated calls before the if.