Error: Found array with dim 3. Estimator expected <= 2

I have a 14x5 data matrix titled data. The first column (Y) is the dependent variable followed by 4 independent variables (X,S1,S2,S3). When trying to fit a regression model to a subset of the independent variables ['S2'][:T] I get the following error:

ValueError: Found array with dim 3. Estimator expected <= 2.

I'd appreciate any insight on a fix. Code below.

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression


data = pd.read_csv('C:/path/Macro.csv')
T=len(data['X'])-1

#Fit variables
X = data['X'][:T]
S1 = data['S1'][:T]
S2 = data['S2'][:T]
S3 = data['S3'][:T]
Y = data['Y'][:T]

regressor = LinearRegression()
regressor.fit([[X,S1,S2,S3]], Y)

Answers


You are passing a 3-dimensional array as the first argument to fit(). X, S1, S2, S3 are all Series objects (1-dimensional), so the following

[[X, S1, S2, S3]]

is 3-dimensional. sklearn estimators expect an array of feature vectors (2-dimensional).

Try something like this:

# pandas indexing syntax
# data.ix[ row index/slice, column index/slice ]

X = data.ix[:T, 'X':]  # rows up to T, columns from X onward
y = data.ix[:T, 'Y']   # rows up to T, Y column
regressor = LinearRegression()
regressor.fit(X, y)

Need Your Help

Make a button with background

jquery html css image button

I want to make a html button with a flag as background. So in the folder images there's a picture called langnl.jpg. My code:

How to pass selected row data from datatable between two beans

jsf jsf-2 primefaces datatable

I've got a datatable with values in which I get from my DB.