Boolean truth table into SOP and Karnaugh Map

Hi, I am junior in college and having trouble with my computer architecture classwork. Anyone care to help & tell me if I got them right?

Question1. Convert truth table into bool equation.

Question2. Find miminum SOP(sum of products)

Question3. Use K-map(Karnaugh map) to simplify.

You can simplify the original expression matching the given truth-table just by using Karnaugh maps:

```f(x,y,z) = ∑(1,3,4,6,7) = m1 + m3 + m4 + m6 + m7
= ¬x·¬y·z + ¬x·y·z + x·y·z + x·¬y·¬z + x·y·¬z      //sum of minterms

f(x,y,z) = ∏(0,2,5) = M0 · M2 · M5
= (x + y + z)·(x + ¬y + z)·(¬x + y + ¬z)           //product of maxterms

f(x,y,z) = x·y + ¬x·z + x·¬z                               //minimal DNF
= (x + z)·(¬x + y + ¬z)                           //minimal CNF
```

You would get the same result using the laws of Boolean algebra:

```¬x·¬y·z  + ¬x·y·z + x·y·z  + x·y·¬z + x·¬y·¬z
¬x·(¬y·z +   y·z) + x·(y·z + y·¬z   + ¬y·¬z)      //distributivity
¬x·(z·(¬y +   y)) + x·(y·(z + ¬z)   + ¬y·¬z))     //distributivity
¬x·(z·(    1   )) + x·(y·(  1   )   + ¬y·¬z))     //complementation
¬x·(z           ) + x·(y            + ¬y·¬z))     //identity for ·
¬x·(z           ) + x·(y +  y·¬z    + ¬y·¬z))     //absorption
¬x·(z           ) + x·(y +  ¬z·(y   +    ¬y))     //distributivity
¬x·(z           ) + x·(y +  ¬z·(    1      ))     //complementation
¬x·(z           ) + x·(y +  ¬z)                   //identity for ·
¬x·z              + x·y  +  x·¬z                  //distributivity

¬x·z + x·y + x·¬z                                 //minimal DNF

¬x·z + x·y + x·¬z
¬x·z + x·(y + ¬z)                                 //distributivity
(¬x + x)·(¬x + (y + ¬z))·(z + x)·(z + (y + ¬z))   //distributivity
(   1  )·(¬x +  y + ¬z )·(z + x)·(z +  y + ¬z)    //complementation
(   1  )·(¬x +  y + ¬z )·(z + x)·(y + 1)          //complementation
(   1  )·(¬x +  y + ¬z )·(z + x)·(1)              //annihilator for +
(¬x +  y + ¬z )·(z + x)                  //identity for ·

(¬x + y + ¬z)·(x + z)                    //minimal CNF
```